BFS VS DFS
BFS 搜索路径可以用图表示。然后按照这个思路很快就想明白了整个流程:首先构造一个无向图用来表示单词之间的可达性,然后从表示起点的节点开始对整个图进行BFS遍历,直到找到表示end的节点。
DFS or BFS? That heavily depends on the structure of the search tree and the number and location of solutions. If you know a solution is not far from the root of the tree, a breadth first search (BFS) might be better. If the tree is very deep and solutions are rare, depth first search (DFS) might take an extremely long time, but BFS could be faster. If the tree is very wide, a BFS might need too much memory, so it might be completely impractical. If solutions are frequent but located deep in the tree, BFS could be impractical. If the search tree is very deep you will need to restrict the search depth for depth first search (DFS), anyway (for example with iterative deepening).
BFS is going to use more memory depending on the branching factor... however, BFS is a complete algorithm... meaning if you are using it to search for something in the lowest depth possible, BFS will give you the optimal solution. BFS space complexity is O(b^d)... the branching factor raised to the depth (can be A LOT of memory).
DFS on the other hand, is much better about space however it may find a suboptimal solution. Meaning, if you are just searching for a path from one vertex to another, you may find the suboptimal solution (and stop there) before you find the real shortest path. DFS space complexity is O(|V|)... meaning that the most memory it can take up is the longest possible path.
They have the same time complexity.
若所有边的长度相等,广度优先搜索算法是最佳解——亦即它找到的第一个解,距离根节点的边数目一定最少。
Last updated
Was this helpful?