solutions
  • solutions
  • Valid Palindrome
  • String to Integer (atoi)
  • addBinary
  • Longest Palindromic Substring
  • Regular Expression Matching
  • Valid Number
  • Count and say
  • Valid anagram
  • Simplify Path
  • Length of last word
  • Longest Valid Parentheses
  • Valid Parentheses
  • Largest Rectangle in Histogram
  • Evaluate Reverse Polish Notation
    • Morris 算法介绍
  • Binary Tree Preorder Traversal
    • //stack
    • //morris
  • Binary Tree Inorder Traversal
    • //stack
    • //morris
  • Binary Tree Postorder Traversal
    • //stack
  • Binary Tree Level Order Traversal
    • 递归
    • 迭代
  • Binary Tree Zigzag Level Order Traversal
    • 递归
    • 迭代
  • Recover Binary Search Tree
    • Recursive
    • morris
  • Same Tree
  • Symmetric Tree
    • Recursive
    • Iterative
  • Balanced Binary Tree
  • Flatten Binary Tree to Linked List
    • Iterative and recursive
  • Populating Next Right Pointers in Each Node II
    • Iterative
    • Recursive
  • Construct Binary Tree from Preorder and Inorder Traversal
  • Construct Binary Tree from Inorder and Postorder Traversal
  • Unique Binary Search Trees
  • Validate Binary Search Tree
  • Convert Sorted Array to Binary Search Tree
  • Convert Sorted List to Binary Search Tree
  • Minimum Depth of Binary Tree
  • Maximum Depth of Binary Tree
  • Path Sum
  • Path Sum II
  • Binary Tree Maximum Path Sum
  • Populating Next Right Pointers in Each Node
  • Sum Root to Leaf Numbers
  • Merge Sorted Array
  • Merge Two Sorted Lists
    • cpp
    • java
  • Merge k Sorted Lists
    • Priority queue
    • merge sort
  • Insertion Sort List
  • Sort List
  • First Missing Positive
  • Sort Colors
  • Search for a Range
  • Search Insert Position
    • Recursive
    • Iterative
  • Search a 2D Matrix
  • *string 的子集(bit)
  • Subsets
    • Bit
    • Recursive
    • Iterative
  • Subsets II
    • Recursive
    • Iterative
  • Permutations
  • Permutations II
    • Java
  • CPP
  • Combinations
    • Recursive
  • Iterative
  • Letter Combinations of a Phone Number
    • Recursive
  • BFS VS DFS
  • Word Ladder
    • Java
Powered by GitBook
On this page

Was this helpful?

Construct Binary Tree from Inorder and Postorder Traversal

public class Solution {

public TreeNode buildTree(int[] inorder, int[] postorder) {

return buildTree(inorder,postorder,0,inorder.length-1,postorder.length-1);

}

public TreeNode buildTree(int[] inorder, int[] postorder, int l, int h, int p){

if(l>h) return null;

TreeNode root= new TreeNode(postorder[p]);

int i;

for(i=l;i<=h;i++){

if(inorder[i]==postorder[p])

break;

}

root.left=buildTree(inorder,postorder,l,i-1,p-1-(h-i));

root.right=buildTree(inorder,postorder,i+1,h,p-1);

return root;

}

}

PreviousConstruct Binary Tree from Preorder and Inorder TraversalNextUnique Binary Search Trees

Last updated 5 years ago

Was this helpful?