Givennnodes labeled from0ton-1and a list of undirected edges (each edge is a pair of nodes), write a function to check whether these edges make up a valid tree.
Example 1:
Input:
n = 5
, and
edges = [[0,1], [0,2], [0,3], [1,4]]
Output:
true
Example 2:
Input:
n = 5,
and
edges = [[0,1], [1,2], [2,3], [1,3], [1,4]]
Output:
false
Note: you can assume that no duplicate edges will appear inedges. Since all edges are undirected,[0,1]is the same as[1,0]and thus will not appear together inedges.
class Solution:
def validTree(self, n: int, edges: List[List[int]]) -> bool:
seen = set()
graph = {i:[] for i in range(n)}
for e in edges:#undirected
graph[e[0]].append(e[1])
graph[e[1]].append(e[0])
return self.dfs(graph,seen,0,-1) and len(seen) == n
def dfs(self, graph, seen,node,parent):
if node in seen:
return False
seen.add(node)
return all([self.dfs(graph,seen,n,node) for n in graph[node] if n!=parent]) #child!=grandparent
bfs
start from any node and delete every node we meet during the BFS. If there is any node left, then there is an isolated component.
注意dict pop用法,no isolated component =no cycle.
class Solution:
def validTree(self, n: int, edges: List[List[int]]) -> bool:
if len(edges) != n-1: return False #别忘了这个!!!!!!!!
g,q = {i:[] for i in range(n)},[0]
for a,b in edges:#undirected
g[a].append(b)
g[b].append(a)
for i in q:
q+=g.pop(i,[])
return not g
Union find
union two nodes that are already in the same group, then there is a cycle.
class Solution:
def validTree(self, n: int, edges: List[List[int]]) -> bool:
if len(edges) != n-1: return False #别忘了这个
f = list(range(n))
def find(x):
if f[x]!=x:
f[x] = find(f[x])
return f[x]
for a,b in edges:
fa,fb = find(a),find(b)
if fa==fb:
return False
f[fa] = fb
return True