329. Longest Increasing Path in a Matrix
https://leetcode.com/problems/longest-increasing-path-in-a-matrix/description/?envType=company&envId=doordash&favoriteSlug=doordash-thirty-days
Given an m x n
integers matrix
, return the length of the longest increasing path in matrix
.
From each cell, you can either move in four directions: left, right, up, or down. You may not move diagonally or move outside the boundary (i.e., wrap-around is not allowed).
Example 1:
Input: matrix = [[9,9,4],[6,6,8],[2,1,1]]
Output: 4
Explanation: The longest increasing path is [1, 2, 6, 9].
Example 2:
Input: matrix = [[3,4,5],[3,2,6],[2,2,1]]
Output: 4
Explanation: The longest increasing path is [3, 4, 5, 6]. Moving diagonally is not allowed.
Example 3:
Input: matrix = [[1]]
Output: 1
Constraints:
m == matrix.length
n == matrix[i].length
1 <= m, n <= 200
0 <= matrix[i][j] <= 231 - 1
DFS+Memo
大数的值由周围最大的小数的值得来
class Solution:
def longestIncreasingPath(self, matrix: List[List[int]]) -> int:
if not matrix or not matrix[0]:
return 0
n,m = len(matrix), len(matrix[0])
cache = [[0]*m for _ in range(n)]
dir = [(0,1),(1,0),(0,-1),(-1,0)]
def dfs(x,y):
if cache[x][y]:
return cache[x][y]
for dx,dy in dir:
nx, ny = x+dx, y+dy
if 0<=nx<n and 0<=ny<m and matrix[nx][ny]<matrix[x][y]:
cache[x][y] = max(cache[x][y], dfs(nx,ny))
cache[x][y] += 1
return cache[x][y]
res = 0
for x in range(n):
for y in range(m):
res = max(res, dfs(x,y))
return res
拓扑排序来做,变形的bfs。 单用bfs不行,因为bfs每个元素仅遍历一次,无法追踪增序数组长度。
Steps:
Compute in-degrees (how many smaller neighbors each cell has).
Start BFS from nodes with in-degree = 0 (smallest values).
Process nodes in layers, updating neighbors and decreasing their in-degrees.
Track depth (path length) during BFS.
```python3
class Solution:
def longestIncreasingPath(self, matrix: List[List[int]]) -> int:
if not matrix or not matrix[0]:
return 0
n,m = len(matrix), len(matrix[0])
in_degree = [[0]*m for _ in range(n)]
dir = [(0,1),(1,0),(0,-1),(-1,0)]
for x in range(n):
for y in range(m):
for dx,dy in dir:
nx, ny = x+dx, y+dy
if 0<=nx<n and 0<=ny<m and matrix[nx][ny]<matrix[x][y]:
in_degree[x][y]+=1
q = deque([(x,y) for x in range(n) for y in range(m) if in_degree[x][y] == 0])
res = 0
while q:
res +=1
for _ in range(len(q)):
x,y = q.popleft()
for dx,dy in dir:
nx, ny = x+dx, y+dy
if 0<=nx<n and 0<=ny<m and matrix[nx][ny]>matrix[x][y]:
in_degree[nx][ny]-=1
if in_degree[nx][ny] == 0:
q.append((nx,ny))
return res
```
Last updated
Was this helpful?