3Sum With Multiplicity
Given an integer arrayA
, and an integertarget
, return the number of tuples i, j, k
such thati < j < k
and A[i] + A[j] + A[k] == target
.
As the answer can be very large, return it modulo 10^9 + 7
.
Example 1:
Input:
A =
[1,1,2,2,3,3,4,4,5,5]
, target =
8
Output:
20
Explanation:
Enumerating by the values (A[i], A[j], A[k]):
(1, 2, 5) occurs 8 times;
(1, 3, 4) occurs 8 times;
(2, 2, 4) occurs 2 times;
(2, 3, 3) occurs 2 times.
Example 2:
Input:
A =
[1,1,2,2,2,2]
, target =
5
Output:
12
Explanation:
A[i] = 1, A[j] = A[k] = 2 occurs 12 times:
We choose one 1 from [1,1] in 2 ways,
and two 2s from [2,2,2,2] in 6 ways.
Note:
3 <= A.length <= 3000
0 <= A[i] <= 100
0 <= target <= 300
分析
这题是重复的3sum,可以和不重复的3sum做比较。
counter里i j k取值。 一定要记住i<j<k 防止重复
用到排列组合
3个重复数就c32=i*(i-1)*(i-2)/6
3个不重复 就是A32 = i*(i-1)*(i-2)
class Solution:
def threeSumMulti(self, A: List[int], target: int) -> int:
c = collections.Counter(A)
MOD = 10**9 + 7
res = 0
ll = list(c.keys())
#三个数必须顺序i<j<k 要不有重复
for i in c.keys():
for j in c.keys():
if j > i:
continue
k = target - i - j
if i == j == k: res += c[i] * (c[i] - 1) * (c[i] - 2) // 6
elif i == j != k: res += c[i] * (c[i] - 1) // 2 * c[k] #不太懂为什么这么不是j<k
elif k > i and k > j: res += c[i] * c[j] * c[k]
return res % MOD
Last updated
Was this helpful?