Topological Sorting
Last updated
Last updated
Given an directed graph, a topological order of the graph nodes is defined as follow:
For each directed edge
A -> B
in graph, A must before B in the order list.
The first node in the order can be any node in the graph with no nodes direct to it.
Find any topological order for the given graph.
Example
For graph as follow:
The topological order can be:
[0, 1, 2, 3, 4, 5]
[0, 2, 3, 1, 5, 4]
...
分析
用map记录每个Node的入度,然后用queue bfs,入度为0就可以加入result,否则入度减一送回queue继续
/**
* Definition for Directed graph.
* class DirectedGraphNode {
* int label;
* ArrayList<DirectedGraphNode> neighbors;
* DirectedGraphNode(int x) { label = x; neighbors = new ArrayList<DirectedGraphNode>(); }
* };
*/
public class Solution {
/**
* @param graph: A list of Directed graph node
* @return: Any topological order for the given graph.
*/
public ArrayList<DirectedGraphNode> topSort(ArrayList<DirectedGraphNode> graph){
ArrayList<DirectedGraphNode> ret = new ArrayList<DirectedGraphNode>();
Map<DirectedGraphNode, Integer> in = new HashMap<DirectedGraphNode, Integer>();
Queue<DirectedGraphNode> q = new LinkedList<DirectedGraphNode>();
for(DirectedGraphNode cur : graph){
//in.put(cur, 0);
q.offer(cur);//入度为0压入q
if(cur.neighbors != null){
for(DirectedGraphNode n : cur.neighbors){
if(in.containsKey(n)){
in.put(n, in.get(n) + 1);
}else{
in.put(n, 1);
}
}
}
}
while(!q.isEmpty()){//这里bfs的q有出栈入栈操作,后面的course schedule就没有 ,只有入度为0才能入q
DirectedGraphNode cur = q.poll();
if(!in.containsKey(cur) || in.get(cur) == 0){
ret.add(cur);
for(DirectedGraphNode n : cur.neighbors){
in.put(n, in.get(n) - 1);
}
}else{
q.offer(cur);
}
}
return ret;
}
// public ArrayList<DirectedGraphNode> topSort(ArrayList<DirectedGraphNode> graph) {
// // write your code here
// ArrayList<DirectedGraphNode> ret = new ArrayList<DirectedGraphNode>();
// HashMap<DirectedGraphNode, Integer> map = new HashMap<DirectedGraphNode, Integer>();
// //每个点的入度用Map来存
// for(DirectedGraphNode n : graph){
// for(DirectedGraphNode neighbor : n.neighbors){
// if(!map.containsKey(neighbor)){
// map.put(neighbor, 1);
// }
// else{
// map.put(neighbor, map.get(neighbor)+1);//注意此处map里value如何更新,要重新Put入,而且不可以用++
// }
// }
// }
// //比起往常的第一个Node入queue,此处给了所有Node的list,所以先把入度为0的点都加入queue
// Queue<DirectedGraphNode> q = new LinkedList<DirectedGraphNode>();
// for(DirectedGraphNode n : graph){
// if(!map.containsKey(n)){
// q.offer(n);
// }
// }
// //在queue里,每次减少入度,只有入度为0才可入queue,最后存入结果。
// while(!q.isEmpty()){
// DirectedGraphNode cur = q.poll();
// ret.add(cur);
// for(DirectedGraphNode neighbor : cur.neighbors){
// map.put(neighbor, map.get(neighbor)-1);
// if(map.get(neighbor) == 0){
// q.offer(neighbor);
// }
// }
// }
// return ret;
// }
}
python
```python
"""
class DirectedGraphNode:
def __init__(self, x):
self.label = x
self.neighbors = []
"""
from collections import deque
class Solution:
"""
@param graph: A list of Directed graph node
@return: Any topological order for the given graph.
"""
def topSort(self, graph):
# write your code here
res = []
if not graph:
return res
label2node = {}
in_degree = {i.label : 0 for i in graph}
for i in graph:
label2node[i.label] = i
for n in i.neighbors:
in_degree[n.label] += 1
q = deque()
for i in in_degree:
if in_degree[i] == 0:
q.append(i)
while q:
cur = q.popleft()
res.append(label2node[cur])
for n in label2node[cur].neighbors:
in_degree[n.label] -= 1
if in_degree[n.label] == 0:
q.append(n.label)
return res
```
dfs做拓扑, 先遍历邻居,再加入当前节点。若无邻居,直接加入当前节点。因为是倒序,最后结果记得要倒回来。
```python
"""
class DirectedGraphNode:
def __init__(self, x):
self.label = x
self.neighbors = []
"""
class Solution:
"""
@param graph: A list of Directed graph node
@return: Any topological order for the given graph.
"""
def topSort(self, graph):
# write your code here
res = []
seen = dict() # node :0/1
for i in graph:
self.dfs(i, seen, res)
return res[::-1]
#toposort:先遍历邻居,再放入自己。如果没邻居,直接放入结果返回。(对应bfs的出度为0)
def dfs(self, node, seen, res):
if seen.get(node,0) == 1:
return
seen[node] = 1
if len(node.neighbors) == 0: #没邻居,无需进行dfs遍历,直接放入结果返回。(对应bfs的出度为0)
res.append(node)
return
for n in node.neighbors:
self.dfs(n, seen, res)
res.append(node)
```