Find Peak Element II

There is an integer matrix which has the following features:

The numbers in adjacent positions are different.

The matrix has n rows and m columns.

For all i < m, A[0][i] < A[1][i] && A[n - 2][i] > A[n - 1][i].

For all j < n, A[j][0] < A[j][1] && A[j][m - 2] > A[j][m - 1].

We define a position P is a peek if:

A[j][i] > A[j+1][i] && A[j][i] > A[j-1][i] && A[j][i] > A[j][i+1] && A[j][i] > A[j][i-1]

Find a peak element in this matrix. Return the index of the peak.

Example

Given a matrix:

[ [1 ,2 ,3 ,6 ,5], [16,41,23,22,6], [15,17,24,21,7], [14,18,19,20,10], [13,14,11,10,9] ]

return index of 41 (which is [1,1]) or index of 24 (which is [2,2])

Challenge

Solve it in O(n+m) time.

If you come up with an algorithm that you thought it is O(n log m) or O(m log n), can you prove it is actually O(n+m) or propose a similar but O(n+m) algorithm?

分析

和在数组中find peak element一样,对行和列分别进行二分查找。

  1. 先对行进行二分搜索,对搜到的那一行元素再进行二分搜索寻找peak element

  2. 对找到的element看上下行的同列元素,若相同则返回,若比上小则在上半部分行继续进行搜索,若比下小则在下半部分的行继续进行搜索 o(logn *n)

  3. 也可以按列分,行列其实一样,行列交替的话O(n),找每行/列最大数时候,记得for loop的start and end变换,不能直接拿整行和整列做。

  4. 数组初始化arraylist

复杂度分析 等比数列,一共logN层 Sn=(1-2^logN) / 1-2 =N

答案

其实如果中间大于两边已经是峰值了,可以直接返回。

Last updated

Was this helpful?