1570. Dot Product of Two Sparse Vectors
Given two sparse vectors, compute their dot product.
Implement class SparseVector
:
SparseVector(nums)
Initializes the object with the vectornums
dotProduct(vec)
Compute the dot product between the instance of SparseVector andvec
A sparse vector is a vector that has mostly zero values, you should store the sparse vector efficiently and compute the dot product between two SparseVector.
Follow up: What if only one of the vectors is sparse?
Example 1:
Input: nums1 = [1,0,0,2,3], nums2 = [0,3,0,4,0]
Output: 8
Explanation: v1 = SparseVector(nums1) , v2 = SparseVector(nums2)
v1.dotProduct(v2) = 1*0 + 0*3 + 0*0 + 2*4 + 3*0 = 8
Example 2:
Input: nums1 = [0,1,0,0,0], nums2 = [0,0,0,0,2]
Output: 0
Explanation: v1 = SparseVector(nums1) , v2 = SparseVector(nums2)
v1.dotProduct(v2) = 0*0 + 1*0 + 0*0 + 0*0 + 0*2 = 0
Example 3:
Input: nums1 = [0,1,0,0,2,0,0], nums2 = [1,0,0,0,3,0,4]
Output: 6
Constraints:
n == nums1.length == nums2.length
1 <= n <= 10^5
分析
可能是稀疏矩阵,所以只存非空数和索引
class SparseVector:
def __init__(self, nums: List[int]):
self.nums = [(i,v) for i,v in enumerate(nums) if v]
# Return the dotProduct of two sparse vectors
def dotProduct(self, vec: 'SparseVector') -> int:
res = 0
i = j = 0
while i < len(self.nums) and j < len(vec.nums):
if self.nums[i][0] == vec.nums[j][0]:
res += self.nums[i][1] * vec.nums[j][1]
j += 1
i += 1
elif self.nums[i][0] < vec.nums[j][0]:
i += 1
else:
j += 1
return res
# Your SparseVector object will be instantiated and called as such:
# v1 = SparseVector(nums1)
# v2 = SparseVector(nums2)
# ans = v1.dotProduct(v2)
Last updated
Was this helpful?